Question Bank

1. The stretch in a steel rod of circular section, having a length L subjected to a tensile load P and tapering uniformly from a diameter d_{1} at one end to a diameter d_{2} at the other end, is given by
(a) $\frac{\mathrm{PL}}{4 \mathrm{Ed}_{1} \mathrm{~d}_{2}}$
(b) $\frac{\mathrm{PL} \pi}{\mathrm{Ed}_{1} \mathrm{~d}_{2}}$
(c) $\frac{\mathrm{PL} \pi}{4 \mathrm{Ed}_{1} \mathrm{~d}_{2}}$
(d) $\frac{4 \mathrm{PL}}{\pi \mathrm{Ed}_{1} \mathrm{~d}_{2}}$
2. The total extension of the bar loaded as shown in the figure is
$\mathrm{A}=$ area of cross-section
$\mathrm{E}=$ modulus of elasticity

$\leftarrow 10 \mathrm{~mm} \rightarrow$ * $10 \mathrm{~mm} \rightarrow$ * $10 \mathrm{~mm} \rightarrow$
(a) $10 \times 30 / \mathrm{AE}$
(b) $26 \times 10 / \mathrm{AE}$
(c) $9 \times 30 / \mathrm{AE}$
(d) $30 \times 22 / \mathrm{AE}$
3. A bar of uniform cross-section of one sq. cm is subjected to a set of five forces as shown in the given figure, resulting in its equilibrium. That maximum tensile stress (in $\mathrm{kgf} / \mathrm{cm}^{2}$) produced in the bar is

(a) 1
(b) 2
(c) 10
(d) 11
4. A 10 cm long and 5 cm diameter steel rod fits snugly between two rigid walls 10 cm apart at room temperature. Young's modulus of elasticity and coefficient of linear expansion of steel are $2 \times 10^{6} \mathrm{kgf} / \mathrm{cm}^{2}$ and $12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ respectively. The stress developed in the rod due to a $100^{\circ} \mathrm{C}$ rise in temperature wall be
(a) $6 \times 10^{-10} \mathrm{kgf} / \mathrm{cm}^{2}$
(b) $6 \times 10^{-9} \mathrm{kgf} / \mathrm{cm}^{2}$
(c) $2.4 \times 10^{3} \mathrm{kgf} / \mathrm{cm}^{2}$
(d) $2.4 \times 10^{4} \mathrm{kgf} / \mathrm{cm}^{2}$
5. For a composite bar consisting of a bar enclosed inside a tube of another material and when compressed under a load W as a whole through rigid collars at the end of the bar. The equation of compatibility is given by (suffixes 1 and 2 refer to bar and tube respectively)
(a) $\mathrm{W}_{1}+\mathrm{W}_{2}=\mathrm{W}$
(b) $\mathrm{W}_{1}+\mathrm{W}_{2}=$ Constant
(c) $\frac{W_{1}}{A_{1} E_{1}}=\frac{W_{2}}{A_{2} E_{2}}$
(d) $\frac{W_{1}}{\mathrm{~A}_{1} \mathrm{E}_{2}}=\frac{\mathrm{E}_{2}}{\mathrm{~A}_{2} \mathrm{E}_{1}}$
6. A tapering bar (diameter of end sectisons being, d_{1} and d_{2}) and a bar of uniform cross-section ' d ' haved thesame length and are subjected the same axial pull. Both the bars will have the same extension if ' d ' is equal to
(a) $\frac{d_{1}+d_{2}}{2}$
(b) $\sqrt{\mathrm{d}_{1} \mathrm{~d}_{2}}$
(c) $\sqrt{\frac{\mathrm{d}_{1}+\mathrm{d}_{2}}{2}}$
(d) $\sqrt{\frac{d_{1}+d_{2}}{2}}$
7. The deformation of a bar under its own weight as compared to that when subjected to a direct axial load equal to its own weight will be
(a) the same
(b) one fourth
(c) half
(d) double
8. A slender bar of $100 \mathrm{~mm}^{2}$ cross-section is subjected to loading as shown in the figure below. If the modulus of elaasticity is taken as $200 \times 10^{9} \mathrm{~Pa}$, then the elongation produced in the bar will be

(a) 10 mm
(b) 5 mm
(c) 1 mm
(d) nil
9. If the rod fitted snugly between the supports as shown in the figure below, is heated, the stress induced in it due to $20^{\circ} \mathrm{C}$ rise in temperature will be $\left(\alpha=12.5 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ and $\left.\mathrm{E}=200 \mathrm{GPa}\right)$

(a) 0.07945 MPa
(b) -0.07945 MPa
(c) -0.03972 MPa
(d) 0.03972 MPa
10. A rod of material with $\mathrm{E}=200 \times 10^{3} \mathrm{MPa}$ and $\alpha=10^{-3} \mathrm{~mm} / \mathrm{mm}^{\circ} \mathrm{C}$ is fixed at both the ends. It is uniformly heated such that the increase in temperature is $30^{\circ} \mathrm{C}$. The stress developed in the rod is
(a) $6000 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile)
(b) $6000 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive)
(c) $2000 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile)
(d) $2000 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive)
11. A link is under a pull which lies on one of the faces as shown in the figure below. The magnitude of maximum compressive stress in the link would be

(a) $21.3 \mathrm{~N} / \mathrm{mm}^{2}$
(b) $16.0 \mathrm{~N} / \mathrm{mm}^{2}$
(c) $10.7 \mathrm{~N} / \mathrm{mm}^{2}$
(d) Zero
12. The axial movement of top surface of stepped column as shown in figure is

(a) $2.5 \mathrm{PL} / \mathrm{AE}$
(b) $3 \mathrm{PL} / \mathrm{AE}$
(c) $1.5 \mathrm{PL} / \mathrm{AE}$
(d) $2 \mathrm{LP} / \mathrm{AE}$
13. The principle of superposition is made use of in structural computations when:
(a) The geometry of the structure changes by a finite amount during the application of the loads
(b) The changes in the geometry of the structure during the application of the loads is too small and the strains in the structure are directly proportional to the corresponding stresses
(c) The strains in the structure are not directly proportional to the corresponding stresses, even though the effect of changes in geometry can be neglected.
(d) None of the above conditions are met.
14. A cantilever beam of tubular section consists of 2 materials copper as outer cylinder and steel as inner cylinder. It is subjected to a temperature rise of $20^{\circ} \mathrm{C}$ and $\alpha_{\text {copper }}>\alpha_{\text {steel }}$. The stresses developed in the tubes will be
(a) Compression is steel and tension in copper
(b) Tension in steel and compression in copper
(c) No stress in both
(d) Tension in both the materials

Email : info@engineersacademy.org
Website : www.engineersacademy.org
(a) $\mathrm{T}_{1}=\mathrm{T}_{2}=\frac{\mathrm{P}}{2}$
(b) $\mathrm{T}_{1}=\frac{\mathrm{Pal}}{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}, \mathrm{T}_{2}=\frac{\mathrm{Pbl}}{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}$
(c) $\mathrm{T}_{1}=\frac{\mathrm{Pbl}}{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}, \mathrm{T}_{2}=\frac{\mathrm{Pal}}{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}$
(c) $\mathrm{T}_{1}=\frac{\mathrm{Pal}}{2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}, \mathrm{T}_{2}=\frac{\mathrm{Pbl}}{2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}$
19. A rod of length ' I ' and cross-section area ' A ' rotates about an axis passing through one end of the rod. The extension produced in the rod due to centrifugal forces is (w is the weight of the rod per unit length and ω is the angular velocity of rotation of the rod.)
(a) $\frac{\omega \mathrm{wl}^{2}}{\mathrm{gE}}$
(b) $\frac{\omega^{2} w l^{3}}{3 g E}$
(c) $\frac{\omega^{2} w l^{3}}{\mathrm{gE}}$
(d) $\frac{3 g E}{\omega^{2} \mathrm{wl}^{3}}$
20. In the case of an engineering material under unidirectional stress in the x -direction, the Poisson's ratio is equal to (symbols have the usual meanings)
(a) $\frac{\varepsilon_{\mathrm{y}}}{\varepsilon_{\mathrm{x}}}$
(b) $\frac{\varepsilon_{y}}{\sigma_{x}}$
(c) $\frac{\sigma_{y}}{\sigma_{x}}$
(d) $\frac{\sigma_{\mathrm{y}}}{\varepsilon_{\mathrm{x}}}$
21. A free bar of length L is uniformly heated form $0^{\circ} \mathrm{C}$ to a temperature $t^{\circ} \mathrm{C} . \alpha$ is the coefficient of linear expansion and E the modulus of elasticity. The stress in the bar is
(a) $\alpha \mathrm{tE}$
(b) $\alpha t E / 2$
(c) zero
(d) none of the above
22. Which one of the following pairs is NOT correctly matched?
($\mathrm{E}=$ Young's modulus, $\mathrm{a}=$ Coefficient of linear expansion, $\mathrm{T}=$ Termperature rise, $\mathrm{A}=$ Area of cross-section, 1 = Original length)
(a) Temperature strain with permitted expansion δ.... $(\alpha \mathrm{Tl}-\delta)$
(b) Temperature stress $\alpha \mathrm{TE}$
(c) Temperature thrust.... α TEA
(d) Temperature stress with permitted expansion

$$
\delta \ldots . \frac{\mathrm{E}(\alpha \mathrm{Tl}-\delta)}{1}
$$

23. The reactions at the rigid supports at A and B for the bar loaded as shown in the figure are respectively.

(a) $20 / 3 \mathrm{kN}, 10 / 3 \mathrm{KN}$
(b) $10 / 3 \mathrm{kN}, 20 / 3 \mathrm{kN}$
(c) $5 \mathrm{kN}, 5 \mathrm{kN}$
(d) $6 \mathrm{kN}, 4 \mathrm{kN}$
24. A steel rod of diameter 1 cm and 1 m long is heated from $20^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$. Its $\alpha=12 \times 10^{-6} / \mathrm{K}$ and $\mathrm{E}=$ $200 \mathrm{GN} / \mathrm{m}^{2}$. If the rod is free to expand, the thermal stress developed in it is:
(a) $12 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
(b) $240 \mathrm{kN} / \mathrm{m}^{2}$
(c) zero
(d) infinity
25. A steel rod 10 mm in diameter and 1 m long is heated from $20^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}, \mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{a}=12 \times 10^{-}$ ${ }^{6}$ per ${ }^{\circ} \mathrm{C}$. If the rod is not free to expand, the thermal stress developed is:
(a) 120 MPa (tensile)
(b) 240 MPa (tensile)
(c) 120 MPa (compressive)
(d) 240 MPa (compressive)
26. A heavy uniform rod of length ' L ' and material density ' δ ' is hung vertically with its top end rigidly fixed. How is the total elongation of the bar under its own weight expressed?
(a) $\frac{2 \delta L^{2} g}{\mathrm{E}}$
(b) $\frac{\delta L^{2} g}{E}$
(c) $\frac{\delta L^{2} g}{\sqrt{2} \mathrm{E}}$
(d) $\frac{\delta L^{2} g}{2 E}$
27. Given that for an element in a body of homogeneous isotropic material subjected to plane stresses. If $\varepsilon_{x}, \varepsilon_{y}$ and ε_{z} are normal strains in x, y and z direction respectively and μ is the poisson's ratio, the magnitude of unit volume change of the element is given by
(a) $\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}$
(b) $\varepsilon_{\mathrm{x}}+\mu\left(\varepsilon_{\mathrm{y}}+\varepsilon_{\mathrm{z}}\right)$
(c) $\mu\left(\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}\right)$
(d) $\frac{1}{\varepsilon_{\mathrm{x}}}+\frac{1}{\varepsilon_{\mathrm{y}}}+\frac{1}{\varepsilon_{\mathrm{z}}}$
28. A solid metal bar of uniform diameter D and length L is hung vertically from a ceiling. If the density of the material of the bar is ρ and the modulus of elasticity is E , then the total elongation of the bar due to its own weight is
(a) $\frac{\rho \mathrm{L}}{2 \mathrm{E}}$
(b) $\frac{\rho^{2}}{2 \mathrm{E}}$
(c) $\frac{\rho \mathrm{E}}{2 \mathrm{~L}}$
(d) $\frac{\rho \mathrm{E}}{2 \mathrm{~L}^{2}}$
29. A bar of circular cross-section varies uniformly from a cross-section 2D to D. If extension of the bar is calculated treating it as a bar of average diameter, then the perentage error will be
(a) 10
(b) 25
(c) 33.33
(d) 50
30. The length, coefficient of thermal expansion and young's modulus of bar A are twice that of bar B. If the temperature of both bars is increased by the same amount while preventing any expansion, then the ratio of stress developed in bar A to that in bar B will be
(a) 2
(b) 4
(c) 8
(d) 16
31. If all the dimensions of a prismatic bar of square cross-section suspended freely from the ceiling of a roof are doubled then the total elongation produced by its own weight will increase
(a) eight times
(b) four times
(c) three times
(d) two times
32. Asseriton (A): The amount of elastic deformation at a certain point, which an elastic body undergoes, under given stress is the same irrespective of the stresses being tensile or compressive.
Reason (\boldsymbol{R}) : The modulus of elasticity and Poisson's ratio are assumed to be the same in tension as well as compression.
(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is not a correct explanation of A
(c) A is true but R is false
(d) A is false but R is true
33. If the loads and reactions of the beam shown are as given in the following figure.

The thrust diagram on the section of the beam, taking tension positive, will be

Codes: \quad A \quad B \quad C \quad D

(a)	3	4	2	1
(b)	5	4	1	2
(c)	5	4	2	1
(d)	2	3	1	5

List-II

1. $2(1+\mu)$
2. $3(1-2 \mu)$
3. $\frac{\mathrm{p}}{\mathrm{E}}(1-2 \mu)$
modulus to bulk modulus
D. Ratio of young's
4. $\frac{p^{2}}{2 E}$
modulus to modulus of rigidity

$$
\text { 5. } 2(1-\mu)
$$

(d) $2-3-1-5$
(a)

(b)

(c)

(d)

ENGINGERS ACADEMY
Your GATEway to Professional Excellence IES \& GATE \& PSUS \& JTO * IAS \& NET

Email : info@engineersacademy.org
Website : www.engineersacademy.org
36. A copper bar of 25 cm length is fixed by means of supports at its ends. Supports can yield (total) by 0.01 cm . If the temperature of the bar is raised by $100^{\circ} \mathrm{C}$, then the stress induced in the bar for $\alpha_{c}=20 \times 10^{-6}{ }^{\circ} \mathrm{C}$ and $\mathrm{E}_{\mathrm{c}}=1 \times 10^{6} \mathrm{~kg} /$ cm^{2} wil be
(a) $2 \times 10^{2} \mathrm{~kg} / \mathrm{cm}^{2}$
(b) $4 \times 10^{2} \mathrm{~kg} / \mathrm{cm}^{2}$
(c) $8 \times 10^{2} \mathrm{~kg} / \mathrm{cm}^{2}$
(d) $16 \times 10^{2} \mathrm{~kg} / \mathrm{cm}^{2}$
37. Two wires of equal length are suspended vertically at a distance of 40 cm as shown in the figure below. Their upper ends are fixed to the ceiling while their lower ends support a rigid horizontal bar which carries a central load of 1 t midway between the wires. Details of the wires are given below:

Wire No.	Area $\left(\mathrm{cm}^{2}\right)$	Material	Modulous of Elasticity $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$	Elongation
1	4	Copper	1×10^{6}	Δ_{c}
2	2	Steel	2×10^{6}	Δ_{s}

The ratio of the elongation of the two wires, $\Delta_{\mathrm{c}} /$ Δ_{s} is
(a) 0.025
(b) 0.5
(c) 2
(d) 1
38. A composite section shown in the figure below was formed at $20^{\circ} \mathrm{C}$ and was made of two materials A and B. If the coefficient of thermal expansion of A is greater than that of B and the composite section is heated to $40^{\circ} \mathrm{C}$, then A and B will

(a) be in tension and compression respectively
(b) both be in compression
(c) both be in tension
(d) be in compression and tension respectively
39. A mild steel bar is in two parts having equal lengths. The area of cross-section of part-1 is double that of Part-2. If the bar carries an axial load P , then the ratio of elongation in Part-1 to that in Part-2 will be
(a) 2
(b) 4
(c) $1 / 2$
(d) $1 / 4$
40. Asseriton (A): A bar tapers from a diameter of ' d_{1} ' to a diameter of ' d_{2} ' over its length L and is subjected to a tensile force P. If extension is calculated based on treating it as a bar of average diameter, the calculated extension will be more than the actual extension.
Reason (R): The actual extension in such bars is given by, $\Delta=\frac{4 \mathrm{PL}}{\pi \mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{E}}$.
(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is not a correct explanation of A
(c) A istrue but R is false
(d) A is false but R is true
41. A round bar made of same material consists of 3 parts each of 100 mm length having diameters of $40 \mathrm{~mm}, 50 \mathrm{~mm}$ and 60 mm , respectively. If the bar is subjected to an axial load of 10 kN , the total elongation of the bar in mm would be (E is the modulus of elasticity in $\mathrm{kN} / \mathrm{mm}^{2}$)
(a) $\frac{0.4}{\pi \mathrm{E}}\left(\frac{1}{16}+\frac{1}{25}+\frac{1}{36}\right)$
(b) $\frac{4}{\pi \mathrm{E}}\left(\frac{1}{16}+\frac{1}{25}+\frac{1}{36}\right)$
(c) $\frac{4 \sqrt{2}}{\pi \mathrm{E}}\left(\frac{1}{16}+\frac{1}{25}+\frac{1}{36}\right)$
(d) $\frac{40}{\pi \mathrm{E}}\left(\frac{1}{16}+\frac{1}{25}+\frac{1}{36}\right)$

Email: info@engineersacademy.org
Website : www.engineersacademy.org

ENGINEERS ACADEMY

42. If a member is subjectd to tensile stress of ' p_{x} ', compressive stress of ' p_{y} ' and tensile stress of ' p_{z} ', along the X, Y and Z directions respectively, then the resultant strain ' e_{x} ' along the X direction would be (E is Young's modulus of elasticity, ' μ ' is Poisson's ratio)
(a) $\frac{1}{E}\left(p_{x}+\mu p_{y}-\mu p_{z}\right)$
(b) $\frac{1}{E}\left(p_{x}+\mu p_{y}+\mu p_{z}\right)$
(c) $\frac{1}{E}\left(p_{x}-\mu p_{y}+\mu p_{z}\right)$
(d) $\frac{1}{E}\left(p_{x}-\mu p_{y}-\mu p_{z}\right)$
43. A steel bar 300 mm long and having 24 mm diameter, is turned down to 18 mm daimeter for one third of its length. It is heated $30^{\circ} \mathrm{C}$ above room temperature, clamped at both ends and than allowed to cool to room temperature. If the distance betwen the clamps is unchanged, the maximum stress in the bar $\left(\alpha=12.5 \times 10^{-}\right.$ ${ }^{6}$ per ${ }^{\circ} \mathrm{C}$ and $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$) is
(a) $25 \mathrm{MN} / \mathrm{m}^{2}$
(b) $50 \mathrm{MN} / \mathrm{m}^{2}$
(c) $75 \mathrm{MN} / \mathrm{m}^{2}$
(d) $100 \mathrm{MN} / \mathrm{m}^{2}$

ENGINEERS ACADEMY

CE : Strength of Material

ANSWERS AND EXPLANATIONS

1. Ans. (d)

Deflection of circular tapering rod subjected to tensile load P. is

$$
\delta \mathrm{L}=\frac{4 \mathrm{PL}}{\pi \mathrm{~d}_{1} \mathrm{~d}_{2} \mathrm{E}}
$$

2. Ans. (b)

$$
\begin{aligned}
& 10 \mathrm{~T} \square^{10 \mathrm{~T}} \stackrel{\square \mathrm{~T}}{\rightarrow}{ }_{7 \mathrm{~T}} \stackrel{9 \mathrm{~T}}{\square} \stackrel{9 \mathrm{~T}}{ } \\
& (\delta 1)_{\text {total }}=(\delta 1)_{1}+(\delta 1)_{2}+(\delta 1)_{3} \\
& =\frac{10 \times 10}{\mathrm{AE}}+\frac{7 \times 10}{\mathrm{AE}}+\frac{9 \times 10}{\mathrm{AE}}=\frac{26 \times 10}{\mathrm{AE}}
\end{aligned}
$$

3. Ans. (d)

F.B.D

Maximum tensile force $=11 \mathrm{~kg} . \mathrm{f}$
Max. tensile stress $=\frac{11}{1 \times 1}$
$=11 \mathrm{~kg} / \mathrm{cm}^{2}$
4. Ans. (c)

\because Strain is prevented stress will be induced in steel rod.

It is satically indeterminate. So we used one equation of compatibility.

$$
\begin{aligned}
\mathrm{L} \alpha \Delta \mathrm{~T} & =\frac{\mathrm{PL}}{\mathrm{AE}} \\
\sigma=\mathrm{E} \alpha \Delta \mathrm{~T} & =12 \times 10^{-6} \times 2 \times 10^{6} \times 100 \\
& =2.4 \times 10^{3} \mathrm{kgf} / \mathrm{cm}^{2}
\end{aligned}
$$

5. Ans. (c)
$(\text { Strain })_{1}=(\text { strain })_{2}$
$\therefore \quad \frac{\mathrm{W}_{1}}{\mathrm{~A}_{1} \mathrm{E}_{1}}=\frac{\mathrm{W}_{2}}{\mathrm{~A}_{2} \mathrm{E}_{2}}$
6. Ans. (b)
$\Delta \mathrm{l}=\frac{4 \mathrm{pl}}{\mathrm{E} \pi \mathrm{d}_{1} \mathrm{~d}_{2}}$
$=\frac{\mathrm{pl}}{\mathrm{E}\left(\frac{\pi \mathrm{d}_{1} \mathrm{~d}_{2}}{4}\right)}=\frac{\mathrm{pl}}{\mathrm{E} \times \text { Area }}$
\therefore Area $=\frac{\pi}{4}\left(\mathrm{~d}_{\text {eq }}\right)^{2}=\frac{\pi}{4} \mathrm{~d}_{1} \mathrm{~d}_{2}$
$\therefore \quad \mathrm{d}_{\mathrm{eq}}=\sqrt{\mathrm{d}_{1} \mathrm{~d}_{2}}$
7. Ans. (c)

Deformation under own weight

Consider a small strip ' $d x$ ' at a distance ' x ' as shown in figure. We shall find change in length for ' dx ' and then integrate for whole length. Force exerted by weight below strip 'dx'
Force $(P)=$ Volume below ' $d x$ ' \times specific weight $=\mathrm{A} \times \mathrm{p}(\mathrm{A}=$ cross - sectional area $)$

Elongation of the strip
$(\delta 1)_{\mathrm{dx}}=\frac{(\mathrm{A} \times l) \mathrm{dx}}{\mathrm{A} \times \mathrm{E}}$

$$
\left[\begin{array}{c}
\text { load }=\mathrm{A} \times \mathrm{p} \\
\text { length }=\mathrm{dx}
\end{array}\right]
$$

$(\delta 1)_{\mathrm{dx}}=\frac{\rho \mathrm{xdx}}{E}$

For total elongation integrate and take limits

$$
\begin{align*}
& \delta l=\int_{0}^{1} \frac{\rho}{\mathrm{E}} \mathrm{xdx}=\frac{\rho}{\mathrm{E}}\left(\frac{\mathrm{x}^{2}}{2}\right)_{0}^{1} \\
& \delta l=\frac{\rho l^{2}}{2 \mathrm{E}} \tag{i}
\end{align*}
$$

Email:info@engineersacademy.org Website : www.engineersacademy.org

Now elongation due to load (W)
$\delta l=\frac{\mathrm{W} l}{\mathrm{AE}}$
load $=$ own weight (givne)
$\mathrm{W}=\rho l \mathrm{~A}$
$\therefore A=\frac{W}{\rho l}$
$\therefore(\delta l)_{w}=\frac{\rho l^{2}}{\mathrm{E}}$
Now from equation (i) and (ii)
Where, $\quad \delta l=$ Elongation due to self load (w)
$(\delta l)_{\mathrm{w}}=$ Elongation externel due to load w
$\frac{\delta l}{\delta l_{\mathrm{w}}}=\frac{1}{2}$
$\therefore \quad \delta l=\delta l_{\mathrm{w}} / 2$
8. Ans. (d)
F.B.D.
$\left(\delta=\frac{\mathrm{PL}}{\mathrm{AE}}\right)$

total elongation
$=\frac{1}{\mathrm{AE}}(100 \times 0.5-100 \times 1+100 \times 0.5)=0$
9. Ans. (b)

Expansion of rod
$=1 \alpha \Delta t=0.5 \times 12.5 \times 10^{-6} \times 20$
$=1.25 \times 10^{-4} \mathrm{~m}$
Force will be induced due to
spring $=1.25 \times 10^{-4} \times 50 \times 1000=6.25$
stress $=\frac{\mathrm{F}}{\mathrm{A}}=\frac{6.25}{\frac{\pi}{4} \times(10)^{2}}=0.07945 \mathrm{MPa}$
10. Ans. (b)

Thermla stress $(\sigma)=\alpha t E$
$=10^{-3} \times 200 \times 10^{3} \times 30$
$=6000 \mathrm{~N} / \mathrm{mm}^{2}$ (compresive)

The stress induced is compressive is nature as a compressive force is exerted by the supports which prevents increase in length due to increase is temperature.
11. Ans. (c)

Equivalent figure,
Bending stress
$\sigma_{b}=\frac{M}{I} y=\frac{4000 \times 25}{\frac{1}{12} \times 15 \times(50)^{3}} \times 25=16 \mathrm{MPa}$
Tensile stress, $\quad \sigma_{t}=\frac{F}{A}=\frac{4000 \mathrm{~N}}{15 \times 50 \mathrm{~mm}^{2}}$
Maximum compressive stress

$$
=\sigma_{b}-\sigma_{t}=16-5.33=10.67 \mathrm{MPa}
$$

12. Ans.(c)
$\frac{\mathrm{PL}}{\mathrm{AE}}+\frac{\mathrm{PL}}{2 \mathrm{AE}}=\frac{1.5 \mathrm{PL}}{\mathrm{AE}}$
13. Ans.(b)

Superposition principle is applicable for structural members with negligible deformation and the loads acting on the member are within elastic limit.
14. Ans.(b)

Steel is less active due to temperature changes compared to copper, therefore steel is subjected to tension and copper is subjected to compression due to composite action,
15. Ans: (b)

For any linear elastic member stiffness is reciprocal of flexibility.

ENGINEERS ACADEMY

CE : Strength of Materials
16. Ans.(c)

$$
\frac{\mathrm{PL}}{\mathrm{AE}}+\frac{\mathrm{PL}}{2 \mathrm{AE}}+\frac{\mathrm{PL}}{\mathrm{AE}}=\frac{2.5 \mathrm{PL}}{\mathrm{AE}}
$$

17. Ans. (c)

Maximum stress in plate develops across rivet hole

$$
\begin{aligned}
P & =95 \times \mathrm{t} \times 10 \mathrm{~cm} \\
& =\sigma \times \mathrm{t} \times(10-5) \mathrm{cm}
\end{aligned}
$$

Max stress, $\sigma=95 \times \frac{10}{5}=190 \mathrm{MPa}$
18. Ans. (c)
$\Sigma \mathrm{M}_{\mathrm{A}}=0$
$\mathrm{T}_{2}(\mathrm{~b})+\mathrm{T}_{1}(\mathrm{a})=\mathrm{P}(l)$

$$
\begin{align*}
\delta l_{1}(\mathrm{~b}) & =\delta \mathrm{l}_{2}(\mathrm{a}) \tag{1}\\
\frac{\mathrm{T}_{1} \mathrm{~L}}{\mathrm{AE}}(\mathrm{~b}) & =\frac{\mathrm{T}_{2} \mathrm{~L}_{\mathrm{a}}}{\mathrm{AE}} \\
\mathrm{~T}_{1} & =\frac{\mathrm{a}}{\mathrm{~b}} \cdot \mathrm{~T}_{2}
\end{align*}
$$

Sub P_{1} in equation (1)

$$
\begin{aligned}
\mathrm{T}_{2}(\mathrm{~b})+\mathrm{T}_{2} \frac{\left(\mathrm{a}^{2}\right)}{\mathrm{b}} & =\mathrm{P}(\mathrm{~L}) \\
\mathrm{T}_{2}\left(\frac{\mathrm{~b}^{2}+\mathrm{a}^{2}}{\mathrm{~b}}\right) & =\mathrm{PL} \\
\mathrm{~T}_{2} & =\frac{\mathrm{PLb}}{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}
\end{aligned}
$$

Similarly $\quad T_{1}=\frac{\text { PLa }}{\left(a^{2}+b^{2}\right)}$
19. Ans. (b)
20. Ans. (a)
21. Ans. (c)

A bar free to expand due to temperature has no stress
22. Ans. (a)

Dimensional analysis gives (a) is wrong.
23. Ans. (a)

Elongation in $\mathrm{AC}=$ length reduction in CB
$\frac{\mathrm{R}_{\mathrm{A}} \times 1}{\mathrm{AE}}=\frac{\mathrm{R}_{\mathrm{B}} \times 2}{\mathrm{AE}}$
and $R_{A}+R_{B}=10$
24. Ans. (c)

Thermal stress will develop only if expansion is restricted.
25. Ans. (d)
$\alpha \mathrm{E} \Delta \mathrm{t}=\left(12 \times 10^{-6}\right) \times\left(200 \times 10^{3}\right) \times(120-20)$

$$
=240 \mathrm{MPa}
$$

It will be compressive as elongation restricted.
26. Ans. (d)

Elongation due to self weight

$$
\begin{aligned}
& =\frac{\mathrm{WL}}{2 \mathrm{AE}}=\frac{(\delta \mathrm{ALg}) \mathrm{L}}{2 \mathrm{AE}} \\
& =\frac{\delta \mathrm{L}^{2} \mathrm{~g}}{2 \mathrm{E}}
\end{aligned}
$$

27. Ans. (a)
28. Ans. (b)

The elongation of bar due to its own weight (W) is

$$
\begin{aligned}
\Delta & =\frac{\mathrm{WL}}{2 \mathrm{AE}} \\
\text { Now } \quad \mathrm{W} & =\rho \mathrm{AL}
\end{aligned}
$$

$$
\therefore \quad \Delta=\frac{\rho L^{2}}{2 \mathrm{E}}
$$

Email : info @ engineersacademy.org Website : www.engineersacademy.org
29. Ans. (a)

$$
\Delta_{0}=\frac{4 \mathrm{PL}}{\pi \mathrm{ED}_{1} \mathrm{D}_{2}}
$$

Actual extension, $\Delta_{0}=\frac{4 \mathrm{PL}}{\pi\left(2 \mathrm{D}^{2}\right) \mathrm{E}}=\frac{2 \mathrm{PL}}{\pi \mathrm{D}^{2} \mathrm{E}}$
The average diameter of bar

$$
=\frac{2 \mathrm{D}+\mathrm{D}}{2}=1.5 \mathrm{D}
$$

Approximate extension,

$$
\Delta=\frac{4 \mathrm{PL}}{\pi \times(1.5 \mathrm{D})^{2} \mathrm{E}}=\frac{4 \mathrm{PL}}{2.25 \pi \mathrm{D}^{2} \mathrm{E}}
$$

\therefore Error in calculation $=\left(1-\frac{\Delta}{\Delta_{0}}\right) \times 100$

$$
=\left(1-\frac{2}{2.25}\right) \times 100=11.11 \% \approx 10 \%
$$

30. Ans. (b)

Temperature Stress $=\mathrm{E} \alpha \Delta \mathrm{T}$
$\frac{\text { Stress in bar } A}{\text { Stress in bar } B}=\left(\frac{E_{A}}{E_{B}}\right)\left(\frac{\alpha_{A}}{\alpha_{B}}\right)=2 \times 2=4$
31. Ans. (a)
32. Ans. (a)
$\mathrm{A}=$ Volumetric strain

$$
\begin{gathered}
\frac{\Delta V}{V}=\frac{\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)}{E}(1-2 \mu) \\
=\frac{p}{E}(1-2 \mu)
\end{gathered}
$$

$B=$ Strain energy per unit volume

$$
\begin{gathered}
l=\frac{1}{2} \text { stress } \times \text { Strain }=\frac{\mathrm{p}^{2}}{2 \mathrm{E}} \\
\mathrm{C}=\mathrm{E}=3 \mathrm{~K}(1-2 \mu) \\
\frac{\mathrm{E}}{\mathrm{~K}}=3(1-2 \mu), \mathrm{E}=2 \mathrm{G}(1+\mu)
\end{gathered}
$$

33. Ans. (b)

The area of bar will become 4 times, and the volume as well as weight will increase 8 times. So increase in elongation
$\left(\Delta=\frac{\mathrm{WL}}{2 \mathrm{EA}}\right)$ will be $\frac{8 \times 2}{4}=4$ times
34. Ans. (a)

If the material is homogeneous \& isotropic, magnitude of deformation will be same if $\mathrm{E} \&$ μ are same in all direction.

$$
\begin{gathered}
\varepsilon_{x}=\frac{\sigma_{x}}{E}-\frac{\mu \sigma_{y}}{E}-\frac{\mu \sigma_{z}}{E} \\
\varepsilon_{x}=\frac{-\sigma_{x}}{E}-\frac{\mu\left(-\sigma_{y}\right)}{E}-\frac{\mu\left(-\sigma_{z}\right)}{E}
\end{gathered}
$$

Magnitude of ε_{x} in (i) as well as (ii) is same.
35. Ans. (a)

Section

AC

Thrust (T)

CD 3.222

DE

$$
3.222-3.464=-0.242
$$

EB

$$
\begin{aligned}
& -0.242+4.242=4.0 \\
& 4-4=0
\end{aligned}
$$

36. Ans. (d)

The elongation in the bar due to increase in temperature $=\mathrm{L} \alpha \Delta \mathrm{T}$
Yield of support reduces strain in the bar by δ.

$$
\therefore \quad \frac{\sigma \mathrm{L}}{\mathrm{E}}=\mathrm{L} \alpha \Delta \mathrm{~T}=\delta
$$

$$
\begin{aligned}
& \quad \sigma=\mathrm{E}\left(\alpha \Delta \mathrm{~T}-\frac{\delta}{\mathrm{L}}\right) \\
& =1 \times 10^{6} \times\left(20 \times 10^{-6} \times 100-\frac{0.01}{25}\right) \\
& =1600 \mathrm{~kg} / \mathrm{cm}^{2}
\end{aligned}
$$

ENGINEERS ACADEMY

CE : Strength of Materials
37. Ans. (d)

Since load of 1 t is applied mid-way so force in both wires will be same and equals to 0.5 t .

$$
\begin{aligned}
& \Delta_{\mathrm{c}}=\frac{500 \times 4}{1 \times 10^{6} \times 4}=5 \times 10^{-4} \mathrm{~m} \\
& \Delta_{\mathrm{s}}=\frac{500 \times 4}{2 \times 10^{6} \times 2}=5 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

$$
\therefore \quad \frac{\Delta_{\mathrm{c}}}{\Delta_{\mathrm{s}}}=1.0
$$

38. Ans. (b)

Since both the ends of the bar are unyielding. With increase in temperature, both bars will be in compression and the load will be transfered to the supports.
39. Ans. (c)

$$
\frac{\Delta_{1}}{\Delta_{2}}=\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}} \times \frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}
$$

Since $\quad L_{1}=L_{2}$ and $A_{1}=2 \mathrm{~A}_{2}$
$\therefore \quad \frac{\Delta_{1}}{\Delta_{2}}=1 \times \frac{1}{2}=\frac{1}{2}$
40. Ans. (d)

The actual extension is more than approximate extension based on average diameter.
41. Ans. (d)

Total elongation $=\frac{4 \mathrm{PL}}{\pi \mathrm{E}}\left(\frac{1}{\mathrm{~d}_{1}^{2}}+\frac{1}{\mathrm{~d}_{2}^{2}}+\frac{1}{\mathrm{~d}_{3}^{2}}\right)$
$=\frac{4 \times 10 \times 100}{\pi \mathrm{E} \times 100}\left[\frac{1}{16}+\frac{1}{25}+\frac{1}{36}\right] \mathrm{mm}$
$=\frac{40}{\pi \mathrm{E}}\left(\frac{1}{16}+\frac{1}{25}+\frac{1}{36}\right) \mathrm{mm}$
42. Ans. (a)
$e_{x}=\frac{1}{E}\left(p_{x}+\mu p_{y}-\mu p_{z}\right)$
43. Ans. (c)

We knowthat temperature stresses do not depend upon properties of cross section like length and area. They only depends upon properties of the material.
$\therefore \quad \sigma=\alpha \mathrm{E} \Delta \mathrm{T}$
$=12.5 \times 10^{-6} \times 200 \times 10^{3} \times 30=75 \mathrm{MN} / \mathrm{m}^{2}$

Email: info@engineersacademy.org Website : www.engineersacademy.org

